The Partially Observable Hidden Markov Model with Application to Keystroke Biometrics
نویسندگان
چکیده
The partially observable hidden Markov model is an extension of the hidden Markov Model in which the hidden state is conditioned on an independent Markov chain. This structure is motivated by the presence of discrete metadata, such as an event type, that may partially reveal the hidden state, but itself emanates from a separate process. Such a scenario is encountered in keystroke dynamics whereby a user’s typing behavior is dependent on the text that is typed. Under the assumption that the user can be in either an active or passive state of typing, the keyboard key names are event types that partially reveal the hidden state due to the presence of relatively longer time intervals between words and sentences than between letters of a word. Using five public datasets, the proposed model is shown to consistently outperform other anomaly detectors, including the standard HMM, in biometric identification and verification tasks and is generally preferred over the HMM in a Monte Carlo goodness of fit test.
منابع مشابه
Robustness of keystroke-dynamics based biometrics against synthetic forgeries
Biometric systems including keystroke-dynamics based authentication have been well studied in the literature. The attack model in biometrics typically considers impersonation attempts launched by human imposters. However, this attack model is not adequate, as advanced attackers may utilize programs to forge data. In this paper, we consider the effects of synthetic forgery attacks in the context...
متن کاملMHIDCA: Multi Level Hybrid Intrusion Detection and Continuous Authentication for MANET Security
Mobile ad-hoc networks have attracted a great deal of attentions over the past few years. Considering their applications, the security issue has a great significance in them. Security scheme utilization that includes prevention and detection has the worth of consideration. In this paper, a method is presented that includes a multi-level security scheme to identify intrusion by sensors and authe...
متن کاملMDPs Semi - Markov decision processes Hidden Markov models Partially observable SMDPs Hierarchical HMMs
متن کامل
Performance of a Single Action Partially Observable Markov Decision Process in a Recognition Task
Partially Observable Markov Decision Processes (POMDPs) have been applied extensively to planning in environments where knowledge of an underlying process is confounded by unknown factors[3, 4, 7]. By applying the POMDP architecture to basic recognition tasks, we introduce a novel pattern recognizer that operates under partially observable conditions. This Single Action Partially Observable Mar...
متن کاملPerformance of a Single Action POMDP in a Recognition Task
Partially Observable Markov Decision Processes (POMDPs) have been applied extensively to planning in environments where knowledge of an underlying process is confounded by unknown factors[3, 4, 7]. By applying the POMDP architecture to a basic recognition task, we introduce a novel pattern recognizer that operates under partially observable conditions. This Single Action Partially Observable Ma...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1607.03854 شماره
صفحات -
تاریخ انتشار 2016